GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) I – Semester

Course Title: Environment and Sustainability (Course Code: C4300003)

Diploma programme in which this course is offered	Semester in which offered					
Chemical, Mechatronics, Computer	First					
Civil, Environment, Mining, Architectural Assistantship,						
Mechanical, Automobile, Marine, Metallurgy,						
Fabrication, Electrical, Electronics and Communication,						
Instrumentation and Control, Bio Medical, Power	Second					
Electronics, IT, Textile Manufacturing, Textile						
Processing, Textile Design, Printing, Plastics, Ceramics,						
CACDDM						

1. RATIONALE

For a country to progress, sustainable development is one of the key factors. Environment conservation and hazard management is of much importance to every citizen of India. Considerable amount of energy is being wasted. Energy saved is energy produced. Environmental pollution is on the rise due to rampant industrial mismanagement and indiscipline. Renewable energy is one of the answers to the energy crisis and also to reduce environmental pollution. Therefore this course has been designed to develop a general awareness of these and related issues so that the every student will start acting as a responsible citizen to make the country and the world a better place to live in.

2. COMPETENCY

The purpose of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

• Adopt the sustainable practices to resolve the environment related issues.

3. COURSE OUTCOMES (Cos)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with this competency are to be developed in the student to display the following COs:

- a) Adopt relevant ecofriendly product in the given situation to protect ecosystem
- b) use relevant method of pollution reduction in the given situation
- c) Use of renewable resources of energy for sustainable development
- d) Use the relevant techniques in given context to reduce impact due to climate change
 Use relevant laws and policies for developing the sustainable environmental development

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total Credits				Examination Scheme					
(In	Hours	s)	(L+T/2+P/2)	Theory	Theory Marks Practical Marks			Total	
L	Т	Р	С	СА	ESE	СА	ESE	Marks	
3	0	0	3	30*	70	0	0	100	

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the microproject to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES – Not Applicable

The following practical outcomes (PrOs) that are the sub-components of the COs. Some of the **PrOs** marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
	Total		44

<u>Note</u>

- *i.* More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- ii. The following are some **sample** 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency..

S. No.	Sample Performance Indicators for the PrOs	Weightage in %
1	Prepare of experimental setup	20
2	Operate the equipment setup or circuit	20
3	Follow safe practices measures	10
4	Record observations correctly	20
5	Interpret the result and conclude	30
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED – (Not Applicable)

These major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practicals in all institutions across the state.

S. No.	Equipment Name with Broad Specifications	PrO. No.
1		

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned COs and PrOs. More could be added to fulfil the development of this competency.

- a) Work as a leader/a team member.
- b) Follow ethical practices.

c) Practice environmental friendly methods and processes. (Environment related)

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

Only the major Underpinning Theory is formulated as higher level UOs of *Revised Bloom's taxonomy* in order development of the COs and competency is not missed out by the students and teachers. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics						
	(4 to 6 UOs at Application and							
	above level)							
Unit – I	1a. Explain the Structure with	1.1 Structure and components of						
Ecosystem	components of the given	ecosystem						
	Ecosystem	1.2 Types of Ecosystem, changes in						
	1b. Explain Carbon, Nitrogen,	ecosystem						
	Sulphur and phosphorus cycle	1.3 Various natural cycles like carbon,						
	for the given ecosystem.	Nitrogen, Sulphur, Phosphorus						
	1c. Justify the need to conserve the	1.4 Ecosystem conservation, carrying						
	given Ecosystem on the w.r.t.	capacity of earth, Biomes in India,						
	following points:carrying capacity of earth	(ESA) Ecologically sensitive areas 1.5 Bio diversity, its need and						
	 Biomes, 	importance, International Union for						
	 Ecologically sensitive area 	Conservation of Nature (IUCN) red						
	1d. Explain the term biodiversity	list						
	with its importance.	1.6 Concept of Ecological foot print,						
	1e. Illustrate the importance of	virtual water, global ecological						
	IUCN red list in environmental	overshoot						
	engineering.							
	1f. Calculate global ecological							
	overshoot and virtual water							
	requirement of given natural							
	and man-made materials.							
Unit – II	2a. Explain the term, "pollution	2.1. Definition of pollution and pollutant						
Pollution	and pollutant" in the given	2.2. Air pollution, classification and its						
and its	situation.	sources						
types	2b.Classify the air pollution on the	2.3. Air pollution control Equipments						
	basis of its source	2.4. Water pollution, pollution						
	2c. Use relevant equipment to	parameters like BOD,COD, pH, Total						
	control given type of air pollution.	suspended solids, Turbidity, Total Solids						
		2.5. Waste water treatment like primary,						
	<u> </u>	2.5. Waste water treatment like prindly,						

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at Application and	
	above level)	
	2d.Explain relevant techniques of	secondary and tertiary
	treatment to deal with given	2.6. Solid waste generation, sources and
	type of water pollution.	characteristics of Muncipal solid
	2e. Apply relevant techniques of	waste
	Solid waste management based	2.7. Collection and disposal of Muncipal
	on its characteristics.	waste and Hazardous waste
	2f. Explain drawbacks of noise	2.8. Noise pollution- its effects, sources
	pollution in given situation.	and measurement
	2g. Describe the environmental	2.9. Plastic waste and its hazard
	degradation due to Plastic	2.10. E waste and its hazard
	waste and E- waste	
Unit– III	3a. Justify the need of renewable	3.1 Need of Renewable energy and energy
Renewable	energy adopting relevant	policy
sources of	energy policy in given situation.	3.2 Solar energy: National solar mission
energy	3b. Explain the working of the solar	3.3 Features of solar thermal and PV
	thermal and PV systems with	systems Advanced collector, Solar Pond, Solar
	sketch in given situation.	water heater, Solar dryer,
	3c. Justify the need of Advanced	polycrystalline, monocrystalline and
	collector, Solar Pond, Solar	thin film PV systems
	water heater, Solar dryer in the	3.4 Wind Energy: Growth of wind power in
	given system.	India
	3d. Emphasize the importance of	3.5 Types of wind turbines – Vertical axis
	wind power in India	wind turbines (VAWT) and horizontal
	3e. Select the relevant type of wind	axis wind turbines (HAWT)
	turbines in the given situation. 3f. Identify the relevant types of	3.6 Types of HAWTs – drag and lift types3.7 Biomass: Overview of biomass as energy
	Sources of biomass energy.	source. Thermal characteristics of
	3g. Draw the neat labelled diagram	biomass as fuel
	of simple biogas plant to	3.8 Anaerobic digestion, Biogas production
	explain its working.	mechanism, utilization and storage.
	3h. Identify the sources of the	3.9 New energy sources: Geothermal energy,
	energy generation for the given	Ocean energy sources, Tidal energy conversion, Hydrogen energy
	situation.	conversion, rryurogen energy
Unit– IV	4a. Explain the term, "climate	4.2 Definition of climate change
Climate	change" in context of	4.3 Global warming-causes, effect,
Change	environment.	process
_	4b. Describe the ill effects of Global	4.4 Greenhouse effect
	warming due to various causes	4.5 Ozone depletion
	arising in the given situation.	4.6 Factors affecting climate change
	4c. Explain the term, "greenhouse	4.7 Impact and mitigation
	effect" with its causes.	4.8 Climate change management
	4d. Relate the impact of Ozone	
	depletion in climate change due	
	to its causes.	

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at Application and	
	above level) 4.1 Identify Factors affecting	
	climate change in given locality.	
	4e. Justify the need of relevant	
	Climate change management	
	system to reduce the impact of	
	climate change in the given	
	context.	
Unit– V		5.1 Environmental policies in India
Environme		5.2 Air act, water act, Environment
ntal	given situation	protection act, wild life protection
legislation	5.b Relate the relevant provision of	act, Forest conservation act,
and	given act in given situation.	Biodiversity act
sustainable	5.c Explain the necessity of the	5.3 Environmental management system:
practices	Environmental management	ISO 14000, definition and benefits
		5.4 Rain water harvesting
	5.d Use the principle of Rain water harvesting in the given	5.5 Green building and rating system in India
	situation.	5.6 Cradle to cradle concept and Life
	5.e Justify the necessity of Green	cycle analysis
	building in India.	5.7 Green label
	5.f. Adopt the relevant rating	5.8 Carbon credit system its advantages
	system for energy calculation	and disadvantages
	for the given building.	5.9 Concept of 5R(Refuse, Reduce,
	5.f Explain the terms, "Cradle to	Reuse, Repurpose, Recycle)
		5.10 Eco tourism: advantages and
	analysis"	disadvantages
	5.g Emphasize the importance of	
	Carbon credit system in India.	
	5.h Explain the importance of 5R	
	concept.	tion Level' and above of Pevised Ploom's

Note: The UOs need to be formulated at the 'Application Level' and above of Revised Bloom's Taxonomy' to accelerate the attainment of the COs and the competency.

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	it Unit Title Teaching Distribution of Theory M					
No.		Hours	R	U .	Α	Total
			Level	Level		Marks
I	Ecosystem	08	6	6	2	14
П	Pollution and its types	10	4	6	6	16
Ш	Renewable sources of energy	10	4	6	6	16
IV	Climate Change	08	4	6	4	14

Unit	Unit Title	Teaching	Distribution of Theory Marks					
No.		Hours	R	U	Α	Total		
			Level	Level		Marks		
V	Environmental legislation and sustainable practices	06	5	3	2	10		
	Total	42	12	28	30	70		

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may vary slightly from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Prepare specification of some renewable sources of energy.
- b) Undertake micro-projects in teams
- c) Give seminar on any relevant topic.
- d) Undertake a market survey of different green materials.
- e) Prepare showcase portfolios.
- f) Prepare report on various issues related to environment and sustainable development
- g) Publish a research paper on themes related to environment and sustainable development.
- h) Compare the pollution (water, air and noise) data of various cities with standard values as laid by pollution control board.
- i) Undertake some small mini projects on various issues related to environment and sustainable development.
- j) Submit a report on visit to an energy park
- k) Prepare power point on clean and green technologies
- I) Submit a report on visit to garbage disposal system in your city/town.
- m) Submit a report on analysis of the life cycle of any one or two eco-friendly product/s.
- n) Calculate ecological footprint using various calculator available on web with a report recommending ways and means to reduce ecological footprint.
- o) Give seminar on relevant topic.
- p) Undertake micro-projects.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- *'L' in section No. 4* means different types of teaching methods that are to be employed by teachers to develop the outcomes.

- d) About 20% of the topics/sub-topics which are relatively simpler or descriptive in nature is to be given to the students for self-learning, but to be assessed using different assessment methods.
- e) With respect to section No.10, teachers need to ensure to create opportunities and provisions for co-curricular activities.
- f) Guide students on how to address issues on environment and sustainability
- g) Guide students for using data manuals.
- h) Guide students for using data manuals.
- i) Arrange visit to nearby industries and workshops for understanding various sources of pollution.
- j) Use video/animation films to explain various processes related to environment and sustainable development
- k) Use different instructional strategies in classroom teaching.
- Write the report on properties of various eco-friendly construction materials like Stone, aggregate of different sizes, timber, lime, bitumen, Bricks, tiles, precast concrete products, Water proofing material, Termite proofing material, Thermal insulating material, plaster of Paris, paints, distemper, and varnishes.
- m) Display various technical brochures of recent projects/themes related to environment and sustainable development
- n) Visit the Pollution control board office and its various projects to demonstrate the various practices adopted for control of Pollution

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be **individually** undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should **not exceed three.**

The micro-project could be industry application based, internet-based, workshop based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than **16** (sixteen) student engagement hours during the course. The student ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) **Natural cycles**: Build a Chart showing different natural cycles like Carbon, Nitrogen,Sulphur and phosphorus cycle.)
- b) Solar Energy: Build a model of Solar water heater/Solar cooker
- c) Wind energy: Build a model of wind mill
- d) **Best out of waste**: Build useful items from waste materials like used plastic bottles, discarded pens etc.

e) Compare the pollution (water, air and noise) data of various cities with standard values as laid by pollution control board.

- f) Surf different websites related environment and sustainable development, Pollution control.
- g) Prepare energy audit report of any residential building.
- h) Collect relevant information about the software used in pollution control.
- o) Visit to ongoing project and study various aspects related to environment and sustainable development

13. SUGGESTED LEARNING RESOURCES

<mark>S.</mark> No.	Title of Book	Author	Publication with place, year and ISBN
1	Renewable Energy Technologies: A Practical Guide for Beginners	Solanki, Chetan Singh	PHI Learning, New Delhi, 2010 Print Book ISBN: 9788120334342 eBook ISBN: 9789354437151
2	Ecology and Control of the Natural Environment	Izrael,Y.A.	Kluwer Academic Publisher eBook ISBN: 978-94-011-3390-6 Softcover ISBN: 978-94-010-5499-7
3	Green Technologies and Environmental Sustainability	Singh, Ritu, Kumar, Sanjeev	Springer International Publishing, 2017 eBook ISBN 978-3-319-50654-8
4	Environmental Noise Pollution and Its Control	G.R. Chhatwal, M. Satake, M.C. Mehra, Mohan Katyal, T. Katyal, T. Nagahiro	Anmol Publications, New Delhi ISBN: 8170411378 ISBN: 8170411378
5	Wind Power Plants and Project Development	Earnest, Joshua & Wizelius, Tore	PHI Learning, New Delhi, 2011 ISBN-10: 8120351274 ISBN-13: 978-8120351271
6	Renewable Energy Sources and Emerging Technologies	Kothari, D.P. Singal, K.C., Ranjan, Rakesh	PHI Learning, New Delhi, 2009 ISBN-13 - 978-8120344709
7	Environmental Studies	Anandita Basak	Pearson Publications ISBN 8131785688, 9788131785683 ISBN: 9788131721186, 8131721183
8	Environmental Science and Engineering	Aloka Debi	University Press ISBN: 9788173718113 ISBN-10: 8173716080 ISBN-13: 978-8173716089
9	Coping With Natural Hazards: Indian Context	K. S. Valadia	Orient Longman ISBN-10: 8125027351 ISBN-13: 978-8125027355
10	Introduction to Engineering and Environment	Edward S. Rubin	Mc Graw Hill Publications ISBN-10 : 0071181857 ISBN-13 : 978-0071181853

14. SOFTWARE/LEARNING WEBSITES

- a) www.nptel.iitm.ac.in
- b) www.khanacademy
- c) http://www1.eere.energy.gov/wind/wind_animation.html
- d) http://www.nrel.gov/learning/re_solar.html
- e) http://www.nrel.gov/learning/re_biomass.html
- f) http://www.mnre.gov.in/schemes/grid-connected/biomass-powercogen/
- g) <u>http://www.epa.gov/climatestudents/</u>
- h) <u>http://www.climatecentral.org</u>
- i) <u>http://www.envis.nic.in/</u>
- j) <u>https://www.overshootday.org/</u>
- k) <u>http://www.footprintcalculator.org/</u>
- I) <u>https://www.carbonfootprint.com/calculator.aspx</u>

15. PO-COMPETENCY-CO MAPPING

Semester II	En	Environment and Sustainability (Course Code:)							
					POs and P	SOs			
Competency	Basic & Discipline	Proble m Analysi	Design/ develop ment of solutio	Engineering Tools, Experiment ation &Testing	PO 5 Engineering practices for society, sustainability & environment	PO 6 Project Manageme nt	PO 7 Life-long learning	. 0	PSO 2 Execution & Maintenan ce
Competency - Adopt the su	stainable	practi	ces to r	esolve the	environme	nt related	issues	-	_
a. Adopt relevant ecofriendly product in the given situation to protect ecosystem	2	1	1	-	2	1	1	2	2
b. use relevant method of pollution reduction in the given situation	2	2	1	1	2	-	2	2	2
c. Use of renewable resources of energy for sustainable development	2	2	2	1	2	2	1	2	2
d. Use the relevant techniques in given context to reduce impact due to climate change	2	2	2	1	2	1	2	2	2
e. Use relevant laws and policies for developing the sustainable environmental development	2	2	2	1	1	1	1	2	2

Legend: '3' for high, '2' for medium, '1' for low or '2' for the relevant correlation of each competency, CO, with PO/ PSO

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S. No.	Name and Designation	Institute	Contact No.	Email
1	Dr. Jayesh Shah	Ass. Dean GTU, Pacific School of Engineering, Surat	9825436342	jayesh.shah.23021971 @gmail.com
2	Mrs. Jini Sunil	Shri K.J. Polytechnic, Bharuch	9601880636	jinivt@rediffmail.com

NITTTR Resource Persons

S. No	Name and Designation	Dept.	Contact No.	Email
1	Dr. V.D.Patil, Associate Professor, DCEEE	DCEEE	9422346736	vdpatil@nitttrbpl.ac.in
2	Prof. M.C.Paliwal, Associate Professor, DCEEE	DCEEE	9407271980	mcpaliwal@nitttrbpl.ac.in